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Antiderivatives

To find a function F whose derivative is f (x) = 3x2, you might use
your knowledge of derivatives to conclude that

F (x) = x3 because
d

dx
[x3] = 3x2.

The function F is an antiderivative of f .

Definition 4.1 (Antiderivative)

A function F is an antiderivative of f on an interval I if F ′(x) = f (x) for
all x in I .

Theorem 4.1 (Representation of antiderivatives)

If F is an antiderivative of f on an interval I , then G is an antiderivative
of f on the interval I if and only if G is of the form G (x) = F (x) + C, for
all x in I where C is a constant.
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The proof of Theorem 4.1 in one direction is straightforward. That is,
if G (x) = F (x) + C , F ′(x) = f (x), and C is a constant, then

G ′(x) =
d

dx
[F (x) + C ] = F ′(x) + 0 = f (x).

To prove this theorem in the other direction, assume that G is an
antiderivative of f .

Define a function H such that H(x) = G (x)− F (x). For any two
points a and b (a < b) in the interval, H is continuous on [a, b] and
differentiable on (a, b).

By the Mean Value Theorem,

H ′(c) =
H(b)− H(a)

b − a

for some c in (a, b). However, H ′(c) = 0, so H(a) = H(b).

Because a and b are arbitrary points in the interval, you know that H
is a constant function C . So, G (x)− F (x) = C and it follows that
G (x) = F (x) + C . �
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You can represent the entire family of antiderivatives of a function by
adding a constant to a known antiderivative.

For example, knowing that Dx [x2] = 2x , you can represent the family
of all antiderivatives of f (x) = 2x by

G (x) = x2 + C Family of all antiderivatives of f (x) = 2x

where C is a constant. The constant C is called the constant of
integration.

The family of functions represented by G is the general antiderivative
of f , and G (x) = x2 + C is the general solution of the differential
equation

G ′(x) = 2x . Differential equation

A differential equation in x and y is an equation that involves x , y ,
and derivatives of y . For instance, y ′ = 3x and y ′ = x2 + 1 are
examples of differential equations.

Szu-Chi Chung (NSYSU) Chapter 4 Integration October 22, 2021 6 / 117



Example 1 (Solving a differential equation)

Find the general solution of the differential equation dy
dx = 2.

To begin, you need to find a function whose derivative is 2.

One such function is

y = 2x . 2x is an antiderivative of 2

Now, you can use Theorem 4.1 to conclude that the general solution
of the differential equation is

y = 2x + C . General solution

The graphs of several functions of the form y = 2x + C are shown in
Figure 1. �
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Figure 1: y ′ = 2: y = 2x + C , C = −1, 0, 2.

When solving a differential equation of the form

dy

dx
= f (x)

it is convenient to write it in the equivalent differential form

dy = f (x)dx .

The operation of finding all solutions of this equation is called
antidifferentiation (or indefinite integration) and is denoted by an
integral sign.
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The general solution is denoted by antiderivative.

The expression
∫
f (x)dx is read as the antiderivative of f with

respect to x . So, the differential dx serves to identify x as the
variable of integration. The term indefinite integral is a synonym for
antiderivative.
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Basic integration rules

The inverse nature of integration and differentiation can be verified by
substituting F ′(x) for f (x) in the indefinite integration definition to
obtain ∫

F ′(x)dx = F (x) + C .

Integration is the ”inverse” of differentiation

Moreover, if
∫
f (x) dx = F (x) + C , then

d

dx

[∫
f (x) dx

]
= f (x).

Differentiation is the ”inverse” of integration

These two equations allow you to obtain integration formulas directly
from differentiation formulas, as shown in the following summary.

For instance, check out
https://www.mathdoubts.com/integral-sum-rule-proof/ for
the sum rule
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Differentiation Formula Integration Formula

d
dx

[C ] = 0
∫

0 dx = C

d
dx

[kx ] = k
∫
k dx = kx + C

d
dx

[kf (x)] = kf ′(x)
∫
kf (x)dx = k

∫
f (x)dx

d
dx

[f (x)± g(x)] = f ′(x)± g ′(x)
∫

[f (x)± g(x)]dx =
∫
f (x) dx ±

∫
g(x) dx

d
dx

[xn] = nxn−1
∫
xn dx = xn+1

n+1
+ C , n 6= −1

Power Rule
d
dx

[sin x ] = cos x
∫

cos x dx = sin x + C

d
dx

[cos x ] = − sin x
∫

sin x dx = − cos x + C

d
dx

[tan x ] = sec2 x
∫

sec2 x dx = tan x + C

d
dx

[sec x ] = sec x tan x
∫

sec x tan x dx = sec x + C

d
dx

[cot x ] = − csc2 x
∫

csc2 x dx = − cot x + C

d
dx

[csc x ] = − csc x cot x
∫

csc x cot x dx = − csc x + C
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Example 2 (Applying the basic integration rules)

Describe the antiderivatives of 3x .

∫
3x dx = 3

∫
x dx = 3

∫
x1 dx = 3

(
x2

2

)
+ C =

3

2
x2 + C

So, the antiderivatives of 3x are of the form 3
2x

2 + C where C is any
constant. �

Note that the general pattern of integration is similar to that of
differentiation.
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Example 3 (Rewriting before integrating)

Original Integral Rewrite Integrate Simplify

a.
∫

1
x3 dx

∫
x−3 dx x−2

−2 + C − 1
2x2 + C

b.
∫ √

x dx
∫
x1/2 dx x3/2

3/2 + C 2
3x

3/2 + C

c.
∫

2 sin x dx 2
∫

sin x dx 2(− cos x) + C −2 cos x + C

�

Example 4 (Integrating polynomial functions)

a.

∫
dx =

∫
1 dx = x + C

b.

∫
(x + 2) dx =

∫
x dx +

∫
2 dx

=
x2

2
+ C1 + 2x + C2 =

x2

2
+ 2x + C

c.

∫
(3x4 − 5x2 + x) dx = 3

(
x5

5

)
− 5

(
x3

3

)
+

x2

2
+ C

=
3

5
x5 − 5

3
x3 +

1

2
x2 + C �

Szu-Chi Chung (NSYSU) Chapter 4 Integration October 22, 2021 13 / 117



Example 5 (Rewriting before integrating)∫
x + 1√

x
dx =

∫ (
x√
x

+
1√
x

)
dx

=

∫ (
x1/2 + x−1/2

)
dx =

2

3
x3/2 + 2x1/2 + C �

Example 6 (Rewriting before integrating)∫
sin x

cos2 x
dx =

∫ (
1

cos x

)(
sin x

cos x

)
dx =

∫
sec x tan x dx = sec x + C�

Example 7 (Rewriting before integrating)

Original Integral Rewrite Integrate Simplify

a.
∫

2√
x
dx 2

∫
x−1/2 dx 2

(
x1/2

1/2

)
+ C 4x1/2 + C

b.
∫

(t2 + 1)2 dt
∫

(t4 + 2t2 + 1) dt t5

5
+ 2

(
t3

3

)
+ t + C 1

5
t5 + 2

3
t3+

t + C

c.
∫

x3+3
x2 dx

∫
(x + 3x−2) dx x2

2
+ 3

(
x−1

−1

)
+ C 1

2
x2 − 3

x
+ C

d.
∫

3
√
x(x − 4)dx

∫
(x4/3 − 4x1/3) dx x7/3

7/3
− 4

(
x4/3

4/3

)
+ C 3

7
x7/3 − 3x4/3+

C �
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Initial conditions and particular solutions

You have already seen that the equation y =
∫
f (x) dx has many

solutions (each differing from the others by a constant).

This means that the graphs of any two antiderivatives of f are
vertical translations of each other. For example, Figure 2 shows the
graphs of several antiderivatives of the form

y =

∫
(3x2 − 1)dx = x3 − x + C General solution

for various integer values of C .

Each of these antiderivatives is a solution of the differential equation

dy

dx
= 3x2 − 1.

In many applications of integration, you are given enough information
to determine a particular solution. To do this, you need only know the
value of y = F (x) for one value of x . This information is called an
initial condition.
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Figure 2: y =
∫

(3x2 − 1)dx = x3 − x + C , C = −1, 0, 1, 2, 3, 4.

For example, in Figure 2, only one curve passes through the point
(2, 4).
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To find this curve, you can use the following information.

F (x) = x3 − x + C F (2) = 4.

By using the initial condition in the general solution, you can
determine that F (2) = 8− 2 + C = 4, which implies that C = −2.
So, you obtain

F (x) = x3 − x − 2. Particular solution
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Example 8 (Finding a particular solution)

Find the general solution of F ′(x) = 1
x2 , x > 0 and find the particular

solution that satisfies the initial condition F (1) = 0.

To find the general solution, integrate to obtain

F (x) =

∫
1

x2
dx =

∫
x−2 dx =

x−1

−1
+ C = −1

x
+ C , x > 0.

Using the initial condition F (1) = 0, you can solve for C as follows.

F (1) = −1

1
+ C = 0 =⇒ C = 1

So, the particular solution, as shown in Figure 3, is

F (x) = −1

x
+ 1, x > 0. Particular solution

�
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Figure 3: The particular solution of F ′(x) = 1
x2 that satisfies the initial condition

F (1) = 0 is F (x) = −(1/x) + 1, x > 0.
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Sigma notation

This section begins by introducing a concise notation for sums. This
notation is called sigma notation because it uses the uppercase Greek
letter sigma, written as

∑
.

Definition 4.2 (Sigma notation)

The sum of n terms a1, a2, a3, . . ., an is written as

n∑
i=1

ai = a1 + a2 + a3 + · · ·+ an

where i is the index of summation, ai is the ith term of the sum, and the
upper and lower bounds of summation are n and 1.
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Example 1 (Examples of sigma notation)

a.
∑6

i=1 i = 1 + 2 + 3 + 4 + 5 + 6

b.
∑5

i=0(i + 1) = 1 + 2 + 3 + 4 + 5 + 6

c.
∑7

j=3 j
2 = 32 + 42 + 52 + 62 + 72

d.
∑5

j=1
1√
j

= 1√
1

+ 1√
2

+ 1√
3

+ 1√
4

+ 1√
5

e.
∑n

k=1
1
n (k2 + 1) = 1

n (12 + 1) + 1
n (22 + 1) + · · ·+ 1

n (n2 + 1)

f.
∑n

i=1 f (xi )∆x = f (x1)∆x + f (x2)∆x + · · ·+ f (xn)∆x �

The following properties of summation can be derived using the associative
and commutative properties of addition and the distributive property of
addition over multiplication. (In the first property, k is a constant.)

1.
∑n

i=1 kai = k
∑n

i=1 ai

2.
∑n

i=1(ai ± bi ) =
∑n

i=1 ai ±
∑n

i=1 bi
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Theorem 4.2 (Summation formulas)

1.
∑n

i=1 c = cn, c is constant 2.
∑n

i=1 i = n(n+1)
2

3.
∑n

i=1 i
2 = n(n+1)(2n+1)

6 4.
∑n

i=1 i
3 = (

∑n
i=1 i)

2 = n2(n+1)2

4

Example 2 (Evaluating a sum)

Evaluate
∑n

i=1
i+1
n2 for n = 10, 100, 1000 and 10000.

Applying Theorem 4.2, you can write

n∑
i=1

i + 1

n2
=

1

n2

n∑
i=1

(i + 1) =
1

n2

(
n∑

i=1

i +
n∑

i=1

1

)

=
1

n2

[
n(n + 1)

2
+ n

]
=

1

n2

[
n2 + 3n

2

]
=

n + 3

2n
.

Now you can evaluate the sum by substituting the appropriate values
of n, as shown in the table. �
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n
∑n

i=1
i+1
n2 = n+3

2n

10 0.65000

100 0.51500

1000 0.50150

10000 0.50015

In Euclidean geometry, the simplest type of plane region is a
rectangle. Although people often say that the formula for the area of
a rectangle is A = bh, it is actually more proper to say that this is the
definition of the area of a rectangle.

From this definition, you can develop formulas for the areas of many
other plane regions. For example, to determine the area of a triangle,
you can form a rectangle whose area is twice that of the triangle, as
shown in Figure 4.

Szu-Chi Chung (NSYSU) Chapter 4 Integration October 22, 2021 24 / 117



Figure 4: Area of triangle: A = 1
2bh

Once you know how to find the area of a triangle, you can determine
the area of any polygon by subdividing the polygon into triangular
regions, as shown in Figure 5.

(a) Parallelogram (b) Hexagon (c) Polygon

Figure 5: Determine the area of any polygon by subdividing the polygon into
triangular regions.
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Finding the areas of regions other than polygons is more difficult. The
ancient Greeks were able to determine formulas for the areas of some
general regions (principally those bounded by conics) by the
exhaustion method.
The clearest description of this method was given by Archimedes
(287-212 B.C.) (the greatest applied mathematician of antiquity).
Essentially, the method is a limiting process in which the area is
squeezed between two polygons—one inscribed in the region and one
circumscribed about the region.
For instance, in Figure 6 the area of a circular region is approximated
by an n-sided inscribed polygon and an n-sided circumscribed polygon.

Figure 6: The exhaustion method for finding the area of a circular region.
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For each value of n, the area of the inscribed polygon is less than the
area of the circle, and the area of the circumscribed polygon is greater
than the area of the circle.

Moreover, as n increases, the areas of both polygons become better
and better approximations of the area of the circle.

Example 3 (Approximating the area of a plane region)

Use the five rectangles in Figure 7 to find two approximations of the area
of the region lying between the graph of f (x) = −x2 + 5 and the x-axis
between x = 0 and x = 2.
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(a) The area of the
parabolic region is greater
than the area of the
rectangles

(b) The area of the
parabolic region is less
than the area of the
rectangles.

Figure 7: The Exhaustion Method for finding the area of a parabolic region.

a. The right endpoints of the five intervals are 2
5 i , where i = 1, 2, 3, 4, 5.

The width of each rectangle is 2
5 , and the height of each rectangle can

be obtained by evaluating f at the right endpoint of each interval.
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The sum of the areas of the five rectangles is

5∑
i=1

Height︷ ︸︸ ︷
f

(
2i

5

) Width︷ ︸︸ ︷(
2

5

)
=

5∑
i=1

[
−
(

2i

5

)2

+ 5

](
2

5

)
=

162

25
= 6.48.

Because each of the five rectangles lies inside the parabolic region,
you can conclude that the area of the parabolic region is greater than
6.48.

b. The left endpoints of the five intervals are 2
5 (i − 1), where i = 1, 2, 3,

4, 5. The width of each rectangle is 2
5 , and the height of each

rectangle can be obtained by evaluating f at the left endpoint of each
interval.

So, the sum is

5∑
i=1

Height︷ ︸︸ ︷
f

(
2i − 2

5

) Width︷ ︸︸ ︷(
2

5

)
=

5∑
i=1

[
−
(

2i − 2

5

)2

+ 5

](
2

5

)
=

202

25
= 8.08.
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Because the parabolic region lies within the union of the five
rectangular regions, you can conclude that the area of the parabolic
region is less than 8.08.
By combining the results in parts (a) and (b), you can conclude that
6.48 < (Area of region) < 8.08. �

Consider a plane region bounded above by the graph of a
nonnegative, continuous function y = f (x), as shown in Figure 8.
The region is bounded below by the x-axis, and the left and right
boundaries of the region are the vertical lines x = a and x = b.

Figure 8: The region under a curve.
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To approximate the area of the region, begin by subdividing the
interval [a, b] into n subintervals, each of width ∆x = (b − a)/n, as
shown in Figure 9.

Figure 9: The interval [a, b] is divided into n subintervals of width ∆x = b−a
n .

The endpoints of the intervals are as follows.

a = x0︷ ︸︸ ︷
a + 0(∆x) <

x1︷ ︸︸ ︷
a + 1(∆x) <

x2︷ ︸︸ ︷
a + 2(∆x) < · · · <

xn = b︷ ︸︸ ︷
a + n(∆x)

Because f is continuous, the Extreme Value Theorem guarantees the
existence of a minimum and a maximum value of f (x) in each
subinterval.
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f (mi ) = Minimum value of f (x) in ith subinterval

f (Mi ) = Maximum value of f (x) in ith subinterval

Next, define an inscribed rectangle lying inside the ith subregion and
a circumscribed rectangle extending outside the ith subregion. The
height of the ith inscribed rectangle is f (mi ) and the height of the ith
circumscribed rectangle is f (Mi ).

For each i , the area of the inscribed rectangle is less than or equal to
the area of the circumscribed rectangle.

(
Area of inscribed

rectangle

)
= f (mi )∆x ≤ f (Mi )∆x =

(
Area of circumscribed

rectangle

)
The sum of the areas of the inscribed rectangles is called a lower sum,
and the sum of the areas of the circumscribed rectangles is called an
upper sum.
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Lower sum = s(n) =
n∑

i=1

f (mi )∆x Area of inscribed rectangles

Upper sum = S(n) =
n∑

i=1

f (Mi )∆x Area of circumscribed rectangles

You can see that the lower sum s(n) is less than or equal to the upper
sum S(n). Moreover, the actual area of the region lies between these
two sums.

s(n) ≤ (Area of region) ≤ S(n)

(a) Area of inscribed
rectangles is less
than area of region.

(b) Area of region.

(c) Area of
circumscribed
rectangles is greater
than area of region.

Figure 10: Upper and lower sums for a region.Szu-Chi Chung (NSYSU) Chapter 4 Integration October 22, 2021 33 / 117



Example 4 (Finding upper and lower sums for a region)

Find the upper and lower sums for the region bounded by the graph of
f (x) = x2 and the x-axis between x = 0 and x = 2.

To begin, partition the interval [0, 2] into n subintervals, each of width

∆x =
b − a

n
=

2− 0

n
=

2

n
.

The following figure shows the endpoints of the subintervals and
several inscribed and circumscribed rectangles.

(a) Inscribed rectangles.
(b) Circumscribed
rectangles

Figure 11: Inscribed and circumscribed rectangles for y = x2 on [0, 2].Szu-Chi Chung (NSYSU) Chapter 4 Integration October 22, 2021 34 / 117



Because f is increasing on the interval [0, 2], the minimum value on
each subinterval occurs at the left endpoint, and the maximum value
occurs at the right endpoint.

Left Endpoints Right Endpoints

mi = 0 + (i − 1)
(

2
n

)
= 2(i−1)

n Mi = 0 + (i)
(

2
n

)
= 2i

n
Using the left endpoints, the lower sum is

s(n) =
n∑

i=1

f (mi )∆x =
n∑

i=1

f

[
2(i − 1)

n

](
2

n

)

=
n∑

i=1

[
2(i − 1)

n

]2(2

n

)
=

n∑
i=1

(
8

n3

)
(i2 − 2i + 1)

=
8

n3

(
n∑

i=1

i2 − 2
n∑

i=1

i +
n∑

i=1

1

)

=
8

n3

{
n(n + 1)(2n + 1)

6
− 2

[
n(n + 1)

2

]
+ n

}
=

4

3n3
(2n3 − 3n2 + n) =

8

3
− 4

n
+

4

3n2
.
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Using the right endpoints, the upper sum is

S(n) =
n∑

i=1

f (Mi )∆x =
n∑

i=1

f

(
2i

n

)(
2

n

)

=
n∑

i=1

(
2i

n

)2(2

n

)
=

n∑
i=1

(
8

n3

)
i2

=
8

n3

[
n(n + 1)(2n + 1)

6

]
=

4

3n3
(2n3 + 3n2 + n) =

8

3
+

4

n
+

4

3n2
. �
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Theorem 4.3 (Limits of the lower and upper sums)

Let f be continuous and nonnegative on the interval [a, b]. The limits as
n→∞ of both the lower and upper sums exist and are equal to each
other. That is,

lim
n→∞

s(n) = lim
n→∞

n∑
i=1

f (mi )∆x = lim
n→∞

n∑
i=1

f (Mi )∆x = lim
n→∞

S(n)

where ∆x = (b − a)/n and f (mi ) and f (Mi ) are the minimum and
maximum values of f on the subinterval.

You are free to choose an arbitrary x-value in the ith subinterval, as
in the following definition of the area of a region in the plane.
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Definition 4.3 (The area of a region in the plane)

Let f be continuous and nonnegative on the interval [a, b]. The area of
the region bounded by the graph of f , the x-axis, and the vertical lines
x = a and x = b is

Area = lim
n→∞

n∑
i=1

f (ci )∆x , xi−1 ≤ ci ≤ xi

where ∆x = (b − a)/n (see Figure 12).

Figure 12: Area of the limit definition.
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Example 5 (Finding area by the limit definition)

Find the area of the region bounded by the graph f (x) = x3, the x-axis,
and the vertical lines x = 0 and x = 1 as shown in Figure 13.

Figure 13: f (x) = x3, 0 ≤ x ≤ 1.

Begin by noting that f is continuous and nonnegative on the interval
[0, 1]. Next, partition the interval [0, 1] into n subintervals, each of
width ∆x = 1/n.
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According to the definition of area, you can choose any x-value in the
ith subinterval.

For this example, the right endpoints ci = i/n are convenient.

Area = lim
n→∞

n∑
i=1

f (ci )∆x = lim
n→∞

n∑
i=1

(
i

n

)3(1

n

)
= lim

n→∞

1

n4

n∑
i=1

i3

= lim
n→∞

1

n4

[
n2(n + 1)2

4

]
= lim

n→∞

(
1

4
+

1

2n
+

1

4n2

)
=

1

4

The area of the region is 1
4 . �
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Example 6 (Finding area by the limit definition)

Find the area of the region bounded by the graph of f (x) = 4− x2, the
x-axis, and the vertical lines x = 1 and x = 2, as shown in Figure 14.

Figure 14: The area of the region bounded by the graph of f , the x-axis, x = 1,
and x = 2 is 5

3 .
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The function f is continuous and nonnegative on the interval [1, 2] and so
begin by partitioning the interval into n subintervals, each of width
∆x = 1/n. Choosing the right endpoint

ci = a + i∆x = 1 +
i

n

of each subinterval, you obtain

Area = lim
n→∞

n∑
i=1

f (ci )∆x = lim
n→→∞

n∑
i=1

(
3− 2i

n
− i2

n2

)(
1

n

)

= lim
n→∞

(
1

n

n∑
i=1

3− 2

n2

n∑
i=1

i − 1

n3

n∑
i=1

i2

)

= lim
n→∞

[
3−

(
1 +

1

n

)
−
(

1

3
+

1

2n
+

1

6n2

)]
= 3− 1− 1

3
=

5

3
.

The area of the region is 5
3 . �
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Riemann sums

In previous section, we partition the axis using equal width. In fact we
can use a partition having subintervals of unequal widths as shown in
Figure 15.
The reason this strategy also gave the proper area is that as n
increases, the width of the largest subinterval approaches zero.
This is a key feature of the development of definite integrals.

Figure 15: A partition with subintervals of unequal widths.
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Definition 4.4 (Riemann sum)

Let f be defined on the closed interval [a, b], and let ∆ be a partition of
[a, b] given by

a = x0 < x1 < x2 < · · · < xn−1 < xn = b

where ∆xi is the width of the ith subinterval. If ci is any point in the ith
subinterval [xi−1, xi ], then the sum

n∑
i=1

f (ci )∆xi , xi−1 ≤ ci ≤ xi

is called a Riemann sum of f for the partition ∆.

The width of the largest subinterval of a partition ∆ is the norm of
the partition and is denoted by ‖∆‖. If every subinterval is of equal
width, the partition is regular and the norm is denoted by

‖∆‖ = ∆x =
b − a

n
. regular partition
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For a general partition, the norm is related to the number of
subintervals of [a, b] in the following way.

b − a

‖∆‖
≤ n general partition

So, the number of subintervals in a partition approaches infinity as
the norm of the partition approaches 0. That is, ‖∆‖ → 0 implies
that n→∞.
The converse of this statement is not true. For example, let ∆n be
the partition of the interval [0, 1] given by

0 <
1

2n
<

1

2n−1
< · · · < 1

8
<

1

4
<

1

2
< 1.

Figure 16: n→∞ does not imply that ‖∆‖ → 0.
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As shown in Figure 16, for any positive value of n, the norm of the
partition ∆n is 1

2 .

So, letting n approach infinity does not force ‖∆‖ to approach 0. In a
regular partition, however, the statements ‖∆‖ → 0 and n→∞ are
equivalent.

Now we are ready to define the definite integral, consider the
following limit.

lim
‖∆‖→0

n∑
i=1

f (ci )∆xi = L

To say that this limit exists means there exists a real number L such
that for each ε > 0 there exists a δ > 0 so that for every partition
with ‖∆‖ < δ it follows that∣∣∣∣∣L−

n∑
i=1

f (ci )∆xi

∣∣∣∣∣ < ε

regardless of the choice of ci in the ith subinterval of each partition ∆.
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Definite integrals

Definition 4.5 (Definite integral)

If f is defined on the closed interval [a, b] and the limit of Riemann sums
over partitions ∆

lim
‖∆‖→0

n∑
i=1

f (ci )∆xi

exists (as described above), then f is said to be integrable on [a, b] and
the limit is denoted by

lim
‖∆‖→0

n∑
i=1

f (ci )∆xi =

∫ b

a
f (x) dx .

The limit is called the definite integral of f from a to b. The number a is
the lower limit of integration, and the number b is the upper limit of
integration.
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Four steps of finding the definite integral
∫ b
a f (x) dx using Riemann sum

1 Partition: a = x0 < x1 < · · · < xi−1 < xi < · · · < xn = b

2 Sampling: ci ∈ [xi−1, xi ], i = 1, 2, . . ., n

3 Summation:
∑n

i=1 f (ci )∆xi

4 Limit: lim‖∆‖→0

∑n
i=1 f (ci )∆xi =

∫ b
a f (x) dx

Theorem 4.4 (Continuity implies integrability)

If a function f is continuous on the closed interval [a, b], then f is

integrable on [a, b]. That is,
∫ b
a f (x)dx exists.
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Example 2 (Evaluating a definite integral as a limit)

Evaluate the definite integral
∫ 1
−2 2x dx .

The function f (x) = 2x is integrable on the interval [−2, 1] because it
is continuous on [−2, 1].

Moreover, the definition of integrability implies that any partition
whose norm approaches 0 can be used to determine the limit.

For computational convenience, define ∆ by subdividing [−2, 1] into n
subintervals of equal width

∆xi = ∆x =
b − a

n
=

3

n
.

Choosing ci as the right endpoint of each subinterval produces

ci = a + i(∆x) = −2 +
3i

n
.
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So, the definite integral is given by∫ 1

−2
2x dx = lim

‖∆‖→0

n∑
i=1

f (ci )∆xi = lim
n→∞

n∑
i=1

f (ci )∆x

= lim
n→∞

n∑
i=1

2

(
−2 +

3i

n

)(
3

n

)

= lim
n→∞

6

n

n∑
i=1

(
−2 +

3i

n

)
= lim

n→∞

6

n

{
−2n +

3

n

[
n(n + 1)

2

]}
= lim

n→∞

(
−12 + 9 +

9

n

)
= −3. �

Because the definite integral in Example 2 is negative, it does not
represent the area of the region shown in Figure 17.

Definite integrals can be positive, negative, or zero. For a definite
integral to be interpreted as an area, the function f must be
continuous and nonnegative on [a, b], as stated in the following
theorem.
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Figure 17: Because the definite integral is negative, it does not represent the area
of the region.
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Theorem 4.5 (The definite integral as the area of a region)

If f is continuous and nonnegative on the closed interval [a, b], then the
area of the region bounded by the graph of f , the x-axis, and the vertical
lines x = a and x = b is given by (See Figure 18)

Area =

∫ b

a
f (x) dx .

Figure 18: You can use a definite integral to find the area of the region bounded
by the graph of f , the x-axis, x = a, and x = b.
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As an example of Theorem 4.6, consider the region bounded by the
graph of f (x) = 4x − x2 and the x-axis, as shown in Figure 19.

Figure 19: Area =
∫ 4

0
(4x − x2)dx .

Because f is continuous and nonnegative on the closed interval [0, 4],
the area of the region is

Area =

∫ 4

0
(4x − x2) dx .

You can evaluate a definite integral in two ways—you can use the
limit definition or you can check to see whether the definite integral
represents the area of a common geometric region such as a
rectangle, triangle, or semicircle.
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Example 3 (Areas of common geometric figures)

Sketch the region corresponding to each definite integral. Then evaluate
each integral using a geometric formula.
a.
∫ 3

1 4 dx b.
∫ 3

0 (x + 2) dx c.
∫ 2
−2

√
4− x2 dx

a. This region is a rectangle of height 4 and width 2.∫ 3

1
4 dx = (Area of rectangle) = 4(2) = 8

Figure 20: Area of region bounded by the graph of f (x) = 4, the x-axis, x = 1,
and x = 3.
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b. This region is a trapezoid with an altitude of 3 and parallel bases of
lengths 2 and 5. The formula for the area of a trapezoid is
1
2h(b1 + b2).∫ 3

0
(x + 2) dx = (Area of trapezoid) =

1

2
(3)(2 + 5) =

21

2

Figure 21: Area of region bounded by the graph of f (x) = x + 2, the x-axis,
x = 0, and x = 3.
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c. This region is a semicircle of radius 2. The formula for the area of a
semicircle is 1

2 πr
2.∫ 2

−2

√
4− x2 dx = (Area of semicircle) =

1

2
π(22) = 2π

�

Figure 22: Area of region bounded by the graph of f (x) =
√

4− x2, the x-axis,
x = −2, and x = 2.

Szu-Chi Chung (NSYSU) Chapter 4 Integration October 22, 2021 57 / 117



The variable of integration in a definite integral is sometimes called a
dummy variable because it can be replaced by any other variable
without changing the value of the integral. For instance, the definite
integrals ∫ 3

0
(x + 2) dx and

∫ 3

0
(t + 2) dt

have the same value.

The definition of the definite integral of f on the interval [a, b]
specifies that a < b.

Now, however, it is convenient to extend the definition to cover cases
in which a = b or a > b.

Geometrically, the following two definitions seem reasonable. For
instance, it makes sense to define the area of a region of zero width
and finite height to be 0.
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Definition 4.6 (Two special definite integrals)

1. If f is defined at x = a, then we define
∫ a
a f (x)dx = 0.

2. If f is integrable on [a, b], then we define
∫ a
b f (x) dx = −

∫ b
a f (x)dx .

Example 4 (Evaluating definite integrals)

Evaluate each definite integral. a.
∫ π
π sin x dx b.

∫ 0
3 (x + 2) dx

a. Because the sine function is defined at x = π, and the upper and
lower limits of integration are equal, you can write∫ π

π
sin x dx = 0.

b. The integral
∫ 3

0 (x + 2) dx has a value of 21
2 you can write∫ 0

3
(x + 2) dx = −

∫ 3

0
(x + 2) dx = −21

2
.

�
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In Figure 24, the larger region can be divided at x = c into two subregions
whose intersection is a line segment. Because the line segment has zero
area, it follows that the area of the larger region is equal to the sum of the
areas of the two smaller regions.

Figure 23: Additive interval property.
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Theorem 4.6 (Additive interval property)

If f is integrable on the three closed intervals determined by a, b, and c,
then ∫ b

a
f (x) dx =

∫ c

a
f (x) dx +

∫ b

c
f (x) dx . See Figure24

Figure 24: Additive interval property.
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Example 5 (Using the additive interval property)∫ 1

−1
|x |dx =

∫ 0

−1
−x dx +

∫ 1

0
x dx =

1

2
+

1

2
= 1 �

Theorem 4.7 (Properties of definite integrals)

If f and g are integrable on [a, b] and k is a constant, then the functions
kf and f ± g are integrable on [a, b], and

1.
∫ b
a kf (x) dx = k

∫ b
a f (x) dx.

2.
∫ b
a [f (x)± g(x)]dx =

∫ b
a f (x) dx ±

∫ b
a g(x) dx.

Note that Property 2 of Theorem 4.7 can be extended to cover any
finite number of functions. For example,∫ b

a
[f (x) +g(x) +h(x)]dx =

∫ b

a
f (x) dx +

∫ b

a
g(x) dx +

∫ b

a
h(x) dx .
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Example 6 (Evaluation of a definite integral)

Evaluate
∫ 3

1 (−x2 + 4x − 3)dx using each of the following values.∫ 3

1
x2 dx =

26

3
,

∫ 3

1
x dx = 4,

∫ 3

1
dx = 2

∫ 3

1
(−x2 + 4x − 3)dx =

∫ 3

1
(−x2)dx +

∫ 3

1
4x dx +

∫ 3

1
(−3)dx

= −
∫ 3

1
x2 dx + 4

∫ 3

1
x dx − 3

∫ 3

1
dx

= −
(

26

3

)
+ 4(4)− 3(2) =

4

3
�
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If f and g are continuous on the closed interval [a, b] and

0 ≤ f (x) ≤ g(x)

for a ≤ x ≤ b, the following properties are true.
First, the area of the region bounded by the graph of f and the x-axis
(between a and b) must be nonnegative.
Second, this area must be less than or equal to the area of the region
bounded by the graph of g and the x-axis (between a and b), as shown
in Figure 25.

These two properties are generalized in Theorem 4.8.

Figure 25: If f (x) ≤ g(x), then
∫ b

a
f (x)dx ≤

∫ b

a
g(x)dx .
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Theorem 4.8 (Preservation of inequality)

1. If f is integrable and nonnegative on the closed interval [a, b], then

0 ≤
∫ b

a
f (x) dx .

2. If f and g are integrable on the closed interval [a, b] and f (x) ≤ g(x)
for every x in [a, b], then∫ b

a
f (x) dx ≤

∫ b

a
g(x)dx .
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The two major branches of calculus: differential calculus and integral
calculus. The close connection was discovered independently by Isaac
Newton and Gottfried Leibniz and is stated in a theorem that is
appropriately called the Fundamental Theorem of Calculus.
Informally, the theorem states that differentiation and (definite)
integration are inverse operations, in the same sense that division and
multiplication are inverse operations.

(a) Differentiation (b) Definite integration

Figure 26: Differentiation and definite integration have an ”inverse” relationship.
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The slope of the tangent line was defined using the quotient ∆y/∆x .

Similarly, the area of a region under a curve was defined using the
product ∆y∆x .

So, at least in the primitive approximation stage, the operations of
differentiation and definite integration appear to have an inverse
relationship in the same sense that division and multiplication are
inverse operations.

The Fundamental Theorem of Calculus states that the limit processes
preserve this inverse relationship.
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Theorem 4.9 (The Fundamental Theorem of Calculus)

If a function f is continuous on the closed interval [a, b] and F is an
antiderivative of f on the interval [a, b], then∫ b

a
f (x)dx = F (b)− F (a).

The key to the proof is in writing the difference F (b)− F (a) in a
convenient form. Let ∆ be any partition of [a, b].

a = x0 < x1 < x2 < · · · < xn−1 < xn = b

By pairwise subtraction and addition of like terms, you can write

F (b)− F (a) = F (xn)− F (xn−1) + F (xn−1)

− · · · − F (x1) + F (x1)− F (x0)

=
n∑

i=1

[F (xi )− F (xi−1)] .
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By the Mean Value Theorem, you know that there exists a number ci
in the subinterval such that

F ′(ci ) =
F (xi )− F (xi−1)

xi − xi−1
.

Because F ′(ci ) = f (ci ), you can let ∆x = xi − xi−1 and obtain

F (b)− F (a) =
n∑

i=1

f (ci )∆xi .

This important equation tells you that by repeatedly applying the
Mean Value Theorem, you can always find a collection of ci ’s such
that the constant F (b)− F (a) is a Riemann sum of f on [a, b] for any
partition.
Theorem 4.4 guarantees that the limit of Riemann sums over the
partition with ‖∆‖ → 0 exists.
So, taking the limit (as ‖∆‖ → 0) produces

F (b)− F (a) =

∫ b

a
f (x) dx .

�
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Guidelines for using the Fundamental Theorem of Calculus

1 Provided you can find an antiderivative of f , you now have a way to
evaluate a definite integral without having to use the limit of a sum.

2 When applying the Fundamental Theorem of Calculus, the
following notation is convenient.∫ b

a
f (x) dx = F (x)]ba = F (b)− F (a)

For instance, to evaluate
∫ 3

1 x3 dx , you can write∫ 3

1
x3 dx =

x4

4

]3

1

=
34

4
− 14

4
=

81

4
− 1

4
= 20.

3 It is not necessary to include a constant of integration C in the
antiderivative because∫ b

a
f (x) dx = [F (x) + C ]ba = [F (b) + C ]− [F (a) + C ]

= F (b)− F (a).
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Example 1 (Evaluating a definite integral)

Evaluate each definite integral.

a.
∫ 2

1 (x2 − 3)dx b.
∫ 4

1 3
√
x dx c.

∫ π/4
0 sec2 x dx

a.
∫ 2

1 (x2 − 3)dx =
[
x3

3 − 3x
]2

1
=
(

8
3 − 6

)
−
(

1
3 − 3

)
= −2

3

b.
∫ 4

1 3
√
x dx = 3

∫ 4
1 x1/2 dx = 3

[
x3/2

3/2

]4

1
= 2(4)3/2 − 2(1)3/2 = 14

c.
∫ π/4

0 sec2 x dx = tan x ]
π/4
0 = 1− 0 = 1 �

Example 2 (Definite integral involving absolute value)

Evaluate
∫ 2

0 |2x − 1|dx .

Using Figure 27 and the definition of absolute value, you can rewrite
the integrand as shown.

|2x − 1| =

{
−(2x − 1), x < 1

2

2x − 1, x ≥ 1
2
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From this, you can rewrite the integral in two parts.∫ 2

0
|2x − 1| dx =

∫ 1/2

0
−(2x − 1)dx +

∫ 2

1/2
(2x − 1)dx

=
[
−x2 + x

]1/2

0
+
[
x2 − x

]2
1/2

=

(
−1

4
+

1

2

)
− (0 + 0) + (4− 2)−

(
1

4
− 1

2

)
=

5

2
�

Figure 27: The definite integral of y = |2x − 1| on [0, 2] is 5
2 .
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Example 3 (Using the Fundamental Theorem to find area)

Find the area of the region bounded by the graph of y = 2x2 − 3x + 2, the
x-axis, and the vertical lines x = 0 and x = 2, as shown in Figure 28.

Figure 28: The area of the region bounded by the graph of y = 2x2 − 3x + 2, the
x-axis, x = 0, and x = 2 is 10

3 .

Szu-Chi Chung (NSYSU) Chapter 4 Integration October 22, 2021 74 / 117



Note that y > 0 on the interval [0, 2].∫ 2

0
(2x2 − 3x + 2) dx =

[
2x3

3
− 3x2

2
+ 2x

]2

0

=

(
16

3
− 6 + 4

)
− (0− 0 + 0) =

10

3
�

The area of a region under a curve is greater than the area of an
inscribed rectangle and less than the area of a circumscribed
rectangle.

The Mean Value Theorem for integrals states that somewhere
”between” the inscribed and circumscribed rectangles there is a
rectangle whose area is precisely equal to the area of the region under
the curve, as shown in Figure 29.
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Figure 29: Mean value rectangle: f (c)(b − a) =
∫ b

a
f (x)dx .

Theorem 4.10 (Mean Value Theorem for Integrals)

If f is continuous on the closed interval [a, b], then there exists a number
c in the closed interval [a, b] such that∫ b

a
f (x) dx = f (c)(b − a).
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Case 1: If f is constant on the interval [a, b], the theorem is clearly
valid because c can be any point in [a, b].
Case 2: If f is not constant on [a, b], then, by the Extreme Value
Theorem, you can choose f (m) and f (M) to be the minimum and
maximum values of f on [a, b].
Because f (m) ≤ f (x) ≤ f (M) for all x in [a, b], you can apply
Theorem 4.8 to write the following.∫ b

a
f (m) dx ≤

∫ b

a
f (x) dx ≤

∫ b

a
f (M) dx See Figure 30

f (m)(b − a) ≤
∫ b

a
f (x) dx ≤ f (M)(b − a)

f (m) ≤ 1

b − a

∫ b

a
f (x)dx ≤ f (M)

From the third inequality, you can apply the Intermediate Value
Theorem to conclude that there exists some c in [a, b] such that

f (c) =
1

b − a

∫ b

a
f (x) dx or f (c)(b − a) =

∫ b

a
f (x)dx .
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(a) Inscribed rectangle
(less than actual area).

(b) Mean value
rectangle (equal to
actual area).

(c) Circumscribed
rectangle (greater than
actual area).

Figure 30: Mean Value Theorem for integrals.

The value of f (c) given in the Mean Value Theorem for integrals is
called the average value of f on the interval [a, b].

Definition 4.7 (The average value of a function on an interval)

If f is integrable on the closed interval [a, b], then the average value of f
on the interval is

1

b − a

∫ b

a
f (x) dx . See Figure 31
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In Figure 31 the area of the region under the graph of f is equal to
the area of the rectangle whose height is the average value.

To see why the average value of f is defined in this way, suppose that
you partition [a, b] into n subintervals of equal width ∆x = (b− a)/n.

If ci is any point in the ith subinterval, the arithmetic average (or
mean) of the function values at the ci ’s is given by

an =
1

n
[f (c1) + f (c2) + · · ·+ f (cn)] . Average of f (c1), . . ., f (cn)

By multiplying and dividing by (b − a) you can write the average as

an =
1

n

n∑
i=1

f (ci )

(
b − a

b − a

)

=
1

b − a

n∑
i=1

f (ci )

(
b − a

n

)
=

1

b − a

n∑
i=1

f (ci )∆x .

Finally, taking the limit as n→∞ produces the average value of f on
the interval [a, b] as given in the definition above.
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Figure 31: Average value = 1
b−a

∫ b

a
f (x)dx .

Example 4 (Finding the average value of a function)

Find the average value of f (x) = 3x2 − 2x on the interval [1, 4].

The average value is given by (See Figure 32)

1

b − a

∫ b

a
f (x) dx =

1

4− 1

∫ 4

1
(3x2 − 2x)dx

=
1

3

[
x3 − x2

]4
1

=
1

3
[64− 16− (1− 1)] =

48

3
= 16.

�
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Figure 32: The average value of f (x) = 3x2 − 2x , 1 < x < 4.

The definite integral of f on the interval [a, b] is defined using the
constant b as the upper limit of integration and x as the variable of
integration.

A slightly different situation may arise in which the variable x is used
in the upper limit of integration.

To avoid the confusion of using x in two different ways, t is
temporarily used as the variable of integration.
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The Definite Integral as a
Number

The Definite Integral as a Func-
tion of x∫ b

a f (x) dx F (x) =
∫ x
a f (t)dt

a: Constant, b: Constant, f :
function of x

a: Constant, F : function of x , f :
function of t

Example 6 (The definite integral as a function)

Evaluate the function

F (x) =

∫ x

0
cos t dt

at x = 0, π/6, π/4, π/3 and π/2.

You could evaluate five different definite integrals, one for each of the
given upper limits.

However, it is much simpler to fix x (as a constant) temporarily to
obtain ∫ x

0
cos t dt = sin t]x0 = sin x − sin 0 = sin x .
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Now, using F (x) = sin x , you can obtain the results shown in
Figure 33. �

Figure 33: F (x) =
∫ x

0
cos t dt is the area under the curve f (t) = cos t from 0 to x .
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The function F (x) as accumulating the area under the curve
f (t) = cos t from t = 0 to t = x .

For x = 0, the area is 0 and F (0) = 0. For x = π/2, F (π/2) = 1
gives the accumulated area under the cosine curve on the entire
interval [0, π/2].

This interpretation of an integral as an accumulation function is used
often in applications of integration.

The derivative of F is the original integrand. That is,

d

dx
[F (x)] =

d

dx
[sin x ] =

d

dx

[∫ x

0
cos t dt

]
= cos x .

This result is generalized in the following theorem, called the Second
Fundamental Theorem of Calculus.
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Theorem 4.11 (The Second Fundamental Theorem of Calculus)

If f is continuous on an open interval I containing a, then, for every x in
the interval, d

dx

[∫ x

a
f (t) dt

]
= f (x).

Begin by defining F as

F (x) =

∫ x

a
f (t)dt.

Then, by the definition of the derivative, you can write

F ′(x) = lim
∆x→0

F (x + ∆x)− F (x)

∆x

= lim
∆x→0

1

∆x

[∫ x+∆x

a
f (t)dt −

∫ x

a
f (t)dt

]
= lim

∆x→0

1

∆x

[∫ x+∆x

a
f (t)dt +

∫ a

x
f (t)dt

]
= lim

∆x→0

1

∆x

[∫ x+∆x

x
f (t)dt

]
.
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From the Mean Value Theorem for Integrals (assuming ∆x > 0), you
know there exists a number c in the interval [x , x + ∆x ] such that the
integral in the expression above is equal to f (c)∆x .

Moreover, because x ≤ c ≤ x + ∆x , it follows that c → x as ∆x → 0.

So, you obtain

F ′(x) = lim
∆x→0

[
1

∆x
f (c)∆x

]
= lim

∆x→0
f (c) = f (x).

A similar argument can be made for ∆x < 0. �
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Using the area model for definite integrals, you can view the
approximation

f (x)∆x ≈
∫ x+∆x

x
f (t) dt

as saying that the area of the rectangle of height f (x) and width ∆x
is approximately equal to the area of the region lying between the
graph of f and the x-axis on the interval [x , x + ∆x ], as shown in
Figure 34.

Figure 34: f (x)∆x ≈
∫ x+∆x

x
f (t)dt.
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Example 7 (Using the Second Fundamental Theorem of Calculus)

Evaluate d
dx

[∫ x
0

√
t2 + 1 dt

]
.

Note that f (t) =
√
t2 + 1 is continuous on the entire real line.

So, using the Second Fundamental Theorem of Calculus, you can
write

d

dx

[∫ x

0

√
t2 + 1 dt

]
=
√
x2 + 1.

�

Example 8 (Using the Second Fundamental Theorem of Calculus)

Find the derivative F (x) =
∫ x3

π/2 cos t dt.

Using u = x3 you can apply the Second Fundamental Theorem of Calculus
with the Chain Rule as shown

F ′(x) =
dF

du

du

dx
=

d

du
[F (x)]

du

dx
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=
d

du

[∫ x3

π/2
cos t dt

]
du

dx
=

d

du

[∫ u

π/2
cos t dt

]
du

dx

= (cos u)(3x2) = (cos x3)(3x2). �

The Fundamental Theorem of Calculus states that if f is continuous
on the closed interval [a, b] and F is an antiderivative of f on [a, b],
then ∫ b

a
f (x)dx = F (b)− F (a).

But because F ′(x) = f (x), this statement can be rewritten as∫ b

a
F ′(x) dx = F (b)− F (a)

where the quantity F (b)− F (a) represents the net change of F on
the interval [a, b].
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Theorem 4.12 (The Net Change Theorem)

The definite integral of the rate of change of a quantity F ′(x) gives the
total change, or net change, in that quantity on the interval [a, b].∫ b

a
F ′(x) dx = F (b)− F (a) Net change of F (x)

Example 9 (Using the Net Change Theorem)

A chemical flows into a storage tank at a rate of 180 + 3t liters per
minute, where 0 ≤ t ≤ 60. Find the amount of the chemical that flows
into the tank during the first 20 minutes.

Let c(t) be the amount of the chemical in the tank at time t.

Then c ′(t) represents the rate at which the chemical flows into the
tank at time t.
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During the first 20 minutes, the amount that flows into the tank is∫ 20

0
c ′(t)dt =

∫ 20

0
(180 + 3t)dt

=

[
180t +

3

2
t2

]20

0

= 3600 + 600 = 4200.

So, the amount that flows into the tank during the first 20 minutes is
4200 liters. �

The velocity of a particle moving along a straight line where s(t) is
the position at time t. Then its velocity is v(t) = s ′(t) and∫ b

a
v(t)dt = s(b)− s(a).

This definite integral represents the net change in position, or
displacement, of the particle.

When calculating the total distance traveled by the particle, you must
consider the intervals where v(t) ≤ 0 and the intervals where
v(t) ≥ 0.
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When v(t) ≤ 0 the particle moves to the left, and when v(t) ≥ 0, the
particle moves to the right. To calculate the total distance traveled,
integrate the absolute value of velocity |v(t)|.
So, the displacement of a particle and the total distance traveled by a
particle over [a, b] can be written as (see Figure 35)

Displacement on [a, b] =

∫ b

a
v(t)dt = A1 − A2 + A3

Total distance traveled on [a, b]

=

∫ b

a
|v(t)|dt = A1 + A2 + A3.

Figure 35: A1, A2, and A3 are the areas of the shaded regions.
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Example 10 (Solving a particle motion problem)

A particle is moving along a line so that its velocity is
v(t) = t3 − 10t2 + 29t − 20 meters per second at time t.

a. What is the displacement of the particle on the time interval
1 ≤ t ≤ 5?

b. What is the total distance traveled by the particle on the time interval
1 ≤ t ≤ 5?

a. By definition, you know that the displacement is∫ 5

1
v(t) dt =

∫ 5

1
(t3 − 10t2 + 29t − 20)dt

=

[
t4

4
− 10

3
t3 +

29

2
t2 − 20t

]5

1

=
25

12
−
(
−103

12

)
=

128

12

=
32

3
.

So, the particle moves 32
3 meters to the right.
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b. To find the total distance traveled, calculate
∫ 5

1 |v(t)|dt. Using the
fact that v(t) can be factored as (t − 1)(t − 4)(t − 5), you can
determine that v(t) ≥ 0 on [1, 4] and on v(t) ≤ 0 on [4, 5].
So, the total distance traveled is∫ 5

1
|v(t)| dt =

∫ 4

1
v(t) dt −

∫ 5

4
v(t) dt

=

∫ 4

1
(t3 − 10t2 + 29t − 20)dt

−
∫ 5

4
(t3 − 10t2 + 29t − 20)dt

=

[
t4

4
− 10

3
t3 +

29

2
t2 − 20t

]4

1

−
[
t4

4
− 10

3
t3 +

29

2
t2 − 20t

]5

4

=
45

4
−
(
− 7

12

)
=

71

6
meters. �
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Figure 36: Total distance traveled.
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In this section you will study techniques for integrating composite
functions.

The discussion is split into two parts—pattern recognition and change
of variables. Both techniques involve a u-substitution.

With pattern recognition you perform the substitution mentally, and
with change of variables you write the substitution steps.

The role of substitution in integration is comparable to the role of the
Chain Rule in differentiation.

Recall that for differentiable functions given by y = F (u) and
u = g(x), the Chain Rule states that

d

dx
[F (g(x))] = F ′(g(x))g ′(x).

From the definition of an antiderivative, it follows that∫
F ′(g(x))g ′(x) dx = F (g(x)) + C .

These results are summarized in the following theorem.
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Theorem 4.13 (Antidifferentiation of a composite function)

Let g be a function whose range is an interval I , and let f be a function
that is continuous on I . If g is differentiable on its domain and F is an
antiderivative of f on I , then∫

f (g(x))g ′(x)dx = F (g(x)) + C .

Letting u = g(x) gives du = g ′(x) dx and∫
f (u)du = F (u) + C .

Example 1 and 2 show how to apply Theorem 4.13 directly, by
recognizing the presence of f (g(x)) and g ′(x).

Note that the composite function in the integrand has an outside
function f and an inside function g .

Moreover, the derivative g ′(x) is present as a factor of the integrand.
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Example 1 (Recognizing the f (g(x))g ′(x) pattern)

Find
∫

(x2 + 1)2(2x)dx .

Letting g(x) = x2 + 1, you obtain

g ′(x) = 2x

and
f (g(x)) = f (x2 + 1) = (x2 + 1)2.

From this, you can recognize that the integrand follows the
f (g(x))g ′(x) pattern.
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Using the Power Rule for Integration and Theorem 4.13, you can write

∫ f (g(x))︷ ︸︸ ︷
(x2 + 1)2

g ′(x)︷︸︸︷
(2x) dx =

1

3
(x2 + 1)3 + C .

Try using the Chain Rule to check that the derivative of
1
3 (x2 + 1)3 + C is the integrand of the original integrand. �

Example 2 (Recognizing the f (g(x))g ′(x) pattern)

Find
∫

5 cos 5x dx .

Letting g(x) = 5x , you obtain

g ′(x) = 5

and
f (g(x)) = f (5x) = cos 5x .

From this, you can recognize that the integrand follows the
f (g(x))g ′(x) pattern.
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Using the Cosine Rule for Integration and Theorem 4.13, you can
write ∫ f (g(x))︷ ︸︸ ︷

(cos 5x)

g ′(x)︷︸︸︷
(5) dx = sin 5x + C .

You can check this by differentiating sin 5x + C to obtain the original
integrand. �

The integrands in Example 1 and Example 2 fit the f (g(x))g ′(x)
pattern exactly—you only had to recognize the pattern.

You can extend this technique considerably with the Constant
Multiple Rule ∫

kf (x) dx = k

∫
f (x)dx .

Many integrands contain the essential part (the variable part) of
g ′(x) but are missing a constant multiple.

In such cases, you can multiply and divide by the necessary constant
multiple, as shown in Example 3.
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Example 3 (Multiplying and dividing by a constant)

Find
∫
x(x2 + 1)2 dx .

This is similar to the integral given in Example 1, except that the
integrand is missing a factor of 2.

Recognizing that 2x is the derivative of x2 + 1, you can let
g(x) = x2 + 1 and supply the 2x as follows.

∫
x(x2 + 1)2 dx =

∫
(x2 + 1)2

(
1

2

)
(2x)dx =

1

2

∫ f (g(x))︷ ︸︸ ︷
(x2 + 1)2

g ′(x)︷︸︸︷
(2x) dx

=
1

2

[
(x2 + 1)3

3

]
+ C =

1

6
(x2 + 1)3 + C . �

Szu-Chi Chung (NSYSU) Chapter 4 Integration October 22, 2021 102 / 117



Change of variables for indefinite integrals

With a formal change of variables, you completely rewrite the integral
in terms of u and du (or any other convenient variable).

Although this procedure can involve more written steps than the
pattern recognition illustrated in Examples 1 and 3, it is useful for
complicated integrands.

The change of variables technique uses the Leibniz notation for the
differential. That is, if u = g(x), then du = g ′(x) dx , and the integral
in Theorem 4.13 takes the form∫

f (g(x))g ′(x) dx =

∫
f (u) du = F (u) + C .
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Example 4 (Change of variables)

Find
∫ √

2x − 1dx .

First, let u be the inner function, u = 2x − 1.

Then calculate the differential du to be du = 2dx .

Now, using
√

2x − 1 =
√
u and dx = du/2 substitute to obtain∫ √

2x − 1dx =

∫ √
u

(
du

2

)
=

1

2

∫
u1/2 du

=
1

2

(
u3/2

3/2

)
+ C =

1

3
u3/2 + C =

1

3
(2x − 1)3/2 + C .

�
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Example 5 (Change of variables)

Find
∫
x
√

2x − 1 dx .

As in the previous example, let u = 2x − 1 and obtain dx = du/2.
Because the integrand contains a factor of x , you must also solve for x in
terms of u, as show

u = 2x − 1 =⇒ x = (u + 1)/2.

Now, using substitution, you obtain∫
x
√

2x − 1dx =

∫ (
u + 1

2

)
u1/2

(
du

2

)
=

1

4

∫
(u3/2 + u1/2)du

=
1

4

(
u5/2

5/2
+

u3/2

3/2

)
+ C

=
1

10
(2x − 1)5/2 +

1

6
(2x − 1)3/2 + C . �
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Example 6 (Change of variables)

Find
∫

sin2 3x cos 3x dx .

Let u = sin 3x . Then du = (cos 3x)(3)dx .

Now, du
3 = cos 3x dx substitute to obtain∫

sin2 3x cos 3x dx =

∫
u2

(
du

3

)
=

1

3

∫
u2 du

=
1

3

(
u3

3

)
+ C =

1

9
sin3 3x + C . �

The steps used for integration by substitution are summarized in the
following guidelines.
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Guidelines for making a change of variables

1 Choose a substitution u = g(x). Usually, it is best to choose the
inner part of a composite function, such as a quantity raised to a
power.

2 Compute du = g ′(x) dx .

3 Rewrite the integral in terms of the variable u.

4 Find the resulting integral in terms of u.

5 Replace u by g(x) to obtain an antiderivative in terms of x .

6 Check your answer by differentiating.
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The General Power Rule for integration

One of the most common u-substitutions involves quantities in the
integrand that are raised to a power.

Because of the importance of this type of substitution, it is given a
special name—the General Power Rule for Integration.

Theorem 4.14 (The General Power Rule for Integration)

If g is a differentiable function of x, then∫
[g(x)]ng ′(x) dx =

[g(x)]n+1

n + 1
+ C , n 6= −1.

Equivalently, if u = g(x), then∫
un du =

un+1

n + 1
+ C , n 6= −1.
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Example 7 (Substitution and the General Power Rule)

a.
∫

3(3x − 1)4 dx =
∫ u4︷ ︸︸ ︷

(3x − 1)4

du︷ ︸︸ ︷
(3)dx =

u5/5︷ ︸︸ ︷
(3x − 1)5

5
+C

b.
∫

(2x + 1)(x2 + x) dx =
∫ u1︷ ︸︸ ︷

(x2 + x)1

du︷ ︸︸ ︷
(2x + 1) dx =

u2/2︷ ︸︸ ︷
(x2 + x)2

2
+C

c.
∫

3x2
√
x3 − 2dx =

∫ u1/2︷ ︸︸ ︷
(x3 − 2)1/2

du︷ ︸︸ ︷
(3x2) dx =

u3/2/(3/2)︷ ︸︸ ︷
(x3 − 2)3/2

3/2
+C =

2
3 (x3 − 2)3/2 + C

d.
∫ −4x

(1−2x2)2 dx =
∫ u−2︷ ︸︸ ︷

(1− 2x2)−2

du︷ ︸︸ ︷
(−4x)dx =

u−1/(−1)︷ ︸︸ ︷
(1− 2x2)−1

−1
+C

= − 1
1−2x2 + C

e.
∫

cos2 x sin x dx = −
∫ u2︷ ︸︸ ︷

(cos x)2

du︷ ︸︸ ︷
(− sin x) dx = −

u3/3︷ ︸︸ ︷
(cos x)3

3
+C �
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Change of variables for definite integrals

When using u-substitution with a definite integral, it is often
convenient to determine the limits of integration for the variable u
rather than to convert the antiderivative back to the variable x and
evaluate at the original limits.

This change of variables is stated explicitly in the next theorem.

Theorem 4.15 (Change of variables for definite integrals)

If the function u = g(x) has a continuous derivative on the closed interval
[a, b] and f is continuous on the range of g, then∫ b

a
f (g(x))g ′(x)dx =

∫ g(b)

g(a)
f (u)du.
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Example 8 (Change of variables)

Evaluate
∫ 1

0 x(x2 + 1)3 dx .

To evaluate this integral, let u = x2 + 1. Then, you obtain

u = x2 + 1 =⇒ du = 2x dx .

Before substituting, determine the new upper and lower limits of
integration.

Lower Limit Upper Limit
When x = 0, u = 02 +
1 = 1.

When x = 1, u = 12 +
1 = 2.

Now, you can substitute to obtain∫ 1

0
x(x2 + 1)3 dx =

1

2

∫ 1

0
(x2 + 1)3(2x) dx =

1

2

∫ 2

1
u3 du

=
1

2

[
u4

4

]2

1

=
1

2

(
4− 1

4

)
=

15

8
.
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Try rewriting the antiderivative 1
2 (u4/4) in terms of the variable x and

evaluate the definite integral at the original limits of integration, as
shown.

1

2

[
u4

4

]2

1

=
1

2

[
(x2 + 1)4

4

]1

0

=
1

2

(
4− 1

4

)
=

15

8

Notice that you obtain the same result. �

Example 9 (Change of variables)

Evaluate
∫ 5

1
x√

2x−1
dx .

To evaluate this integral, let u =
√

2x − 1.

Then, you obtain

u2 = 2x − 1 u2 + 1 = 2x
u2 + 1

2
= x u du = dx .
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Before substituting, determine the new upper and lower limits of
integration.

Lower Limit Upper Limit

When x = 1, u =
√

2− 1 = 1. When x = 5, u =
√

10− 1 = 3.

Now, substitute to obtain∫ 5

1

x√
2x − 1

dx =

∫ 3

1

1

u

(
u2 + 1

2

)
u du =

1

2

∫ 3

1
(u2 + 1) du

=
1

2

[
u3

3
+ u

]3

1

=
1

2

(
9 + 3− 1

3
− 1

)
=

16

3
. �

Even with a change of variables, integration can be difficult.

Occasionally, you can simplify the evaluation of a definite integral
over an interval that is symmetric about the y -axis or about the origin
by recognizing the integrand to be an even or odd function (see
Figure 37).
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(a) Even function (b) Odd function

Figure 37: Even and odd functions.
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Theorem 4.16 (Integration of even and odd functions)

Let f be integrable on the closed interval [−a, a].

1. If f is an even function, then
∫ a
−a f (x)dx = 2

∫ a
0 f (x)dx.

2. If f is an odd function, then
∫ a
−a f (x) dx = 0.

Because f is even, you know that f (x) = f (−x). Using Theorem 4.13
with the substitution u = −x produces∫ 0

−a
f (x) dx =

∫ 0

a
f (−u)(−du) = −

∫ 0

a
f (u) du

=

∫ a

0
f (u) du =

∫ a

0
f (x) dx .

Finally, using Theorem 4.6, you obtain∫ a

−a
f (x)dx =

∫ 0

−a
f (x)dx +

∫ a

0
f (x) dx

=

∫ a

0
f (x)dx +

∫ a

0
f (x) dx = 2

∫ a

0
f (x) dx .
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This proves the first property. The proof of the second property is left
to you (see Exercise 101). �

Example 10 (Integration of an odd function)

Evaluate
∫ π/2
−π/2(sin3 x cos x + sin x cos x)dx .

Letting f (x) = sin3 x cos x + sin x cos x produces

f (−x) = sin3(−x) cos(−x) + sin(−x) cos(−x)

= − sin3 x cos x − sin x cos x = −f (x).

So, f is an odd function, and because f is symmetric about the origin
over [−π/2, π/2], you can apply Theorem 4.16 to conclude that∫ π/2

−π/2
(sin3 x cos x + sin x cos x) dx = 0.

�
From Figure 38, we can see that the two regions on either side of the
y -axis have the same area.
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However, because one lies below the x-axis and one lies above it,
integration produces a cancellation effect. (More will be said about
areas below the x-axis in Section 7.1.)

Figure 38: Integration of an odd function f (x) = sin3 x cos x + sin x cos x ,
−π/2 < x < π/2.
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